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Equivalence of the Langevin and auxiliary-field quantization methods for absorbing dielectrics
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Recently two methods have been developed for the quantization of the electromagnetic field in general
dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin
current in Maxwell's equationgT. Gruner and D.-G. Welsch, Phys. Rev58, 1818(1996; Ho Trung Dung,

L. Knall, and D.-G. Welsch, Phys. Rev. 87, 3931(1998; S. Scheel, L. Knly, and D.-G. Welsch, Phys. Rev.
A 58, 700 (1998], whereas the second makes use of a set of auxiliary fields, followed by a canonical
guantization proceduré. Tip, Phys. Rev. A57, 4818(1998]. We show that both approaches are equivalent.
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I. INTRODUCTION at the outset. Absorption is often undesirable, in particular if
one is interested in band-gap phenomena. In fact absorption

With the advent of modern optical materials, such as opprohibits the formation of the latt¢d.6]. Band-gap photonic
tical fibers and photonic crystals, the problem of quantizatiorcrystals offer many interesting technological applications
of the electromagpnetic field in dielectrics has become an imf17] but require a large dielectric contrast between the scat-
portant subject and much activity has been taking place imerers and background. This can be accomplished by using
this field. Quantization is required to describe the decay omall metal spheres showing a Drude-type behavior, where
embedded atom@or specific cases, see Ref4,2]), the Ca-  the real part of the permittivity can acquire large negative
simir effect[3,4], and other nonclassical phenomena such agalues[18]. However, such systems are always somewhat
the propagation of entangled states through dieleci¢s  absorbing. On the positive side, absorption may be advanta-
We also mention the generation of x-ray transition radiationgeous in the case of transition radiation, where it can be used
by fast electrons traveling through layered dielectfigk to suppress undesired frequendiés

In the case of linear conservative dielectrics, quantization There have been two concepts of quantization of the phe-
is well-known for systems, where the permittivigglectric  nomenological Maxwell field for general dispersing and ab-
permeability ¢ is a real constan7] or a real function of  sorbing linear dielectrics. The firteferred to as the Lange-
space.g=¢(r) [8,9]. Nonlinear dielectrics are discussed in vin noise (LN) concep} is based upon the introduction of
Ref.[10]. For dispersing and truly absorbing media the situ-Langevin noise currerand chargedensities, as dictated by
ation is more complicated, because the permittivity is a comthe fluctuation-dissipation theorem, into the classical Max-
plex function of frequency and varies with space in generalwell equations, which can then be transferred to quantum
i.e.,, e=¢g(r,w). Progress in this field has been fairly recent.theory by conversion of the electromagnetic field quantities

Two basic approaches can be distinguished. The first ifnto operators. After some earlier wofk4,19, restricted to
based on the Hopfield model of a bulk dielecticl]. The  specific simple geometries, a general formalism was put for-
quantized electromagnetic field is coupled to a material sysward by some of u§20-22. In this scheme the dyadic
tem described by a harmonic-oscillator model, and theGreen’s function associated with the classi@homoge-
Hamiltonian of the total system is diagonaliz¢@i2]. A neous Helmholtz equation plays a prominent role. Its prop-
drawback is that it becomes rather cumbersome if spatiadrties come into play by deriving the equal-time commuta-
inhomogeneities are presefit3]. Also the identification of tors for the fields, given those of the noise current operator.
the permittivity is not trivial[14,15. In Ref.[21] the case of a planar interface and in R¢Es23]

The second approach starts off from the classical phenomhe spontaneous decay in a spherical cavity is worked out but
enological Maxwell equations, featuring a general spatiallymore involved situations can also be handled. Basically the
inhomogeneous, complex, frequency-dependent permittivit@sreen’s function of the classical problem must be calculated.
e(r,w) satisfying the Kramers-Kronig relations. It has the For this, general methods and a variety of specific examples
advantage that the really measured values of the permittivityre considered in Ref24]. Efficient methods have been de-
can be used for the theoretical description of quantized lighteloped [such as an adaptation of the Korringa-Kohn-
in media. For example, in the case of photonic crystals madRostokeKKR) approach of solid-state physidsr the pho-
up from dielectric objectéscatterersin a conservative, ho- tonic crystal cas¢25].
mogeneous backgrour{duch as vacuuime(r, ) is known The second conceprteferred to as the auxiliary fieldh\F)

concepf developed by one of UA.T.) [26,27] also starts off

from the classical phenomenological Maxwell equations.
*Electronic address: tip@amolf.nl Here, the introduction of a set of auxiliary fieldastead of a
"Electronic address: scheel@tpi.uni-jena.de noise current allows the replacement of Maxwell’'s equa-
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tions, which features a time convolution term relating the D(r,w)=goe(r,w)E(r,w)+Py(r,w), (2.13
polarization to the electric field, by a new set of equations for
the combined set of electromagnetic and auxiliary fields but B(r,w)=uoH(r,w), (2.19

without time convolutions. For the so extended system, a

conserved quantity, bilinear in all fields, generalizing thewhere

electromagnetic energy, exists. Maxwell’'s equations are re-

trieved by setting the initial auxiliary fields equal to zero. e(rw)=1+x(r,0), (219

The system can then be quantized and the conserved quantity

becomes the Hamiltonian. But now the initial auxiliary | .

fields, being operators, can no longer be set equal to zero. X(r,w)= fo dtexgiotix(r.b). (219
Although the two concepts of quantization of the phenom-

enological Maxwell field look quite different at first glance, Note that for absorbing media

they are fully equivalent, as we show in the present paper.

For this purpose, we first review in Sec. Il the basic formulas e(r,w)=eg(r,o)tig|(r,m), g/(r,0)=0. (2.17

of the LN concept. After reviewing the AF concept, we then

prove in Sec. Il that the AF concept precisely leads to the In the LN concep{20-22,2§, Eqgs.(2.9—(2.14) [or Egs.

noise current operator in the LN concept. Some concluding2-1)—(2.7)] are considered as a set of equations for the elec-

remarks are given in Sec. IV. tromagnetic field supplemented with a noise polarization
P.(r,w) [29]. Its introduction arises from the necessity to
Il. THE LANGEVIN NOISE METHOD fulfill the fluctuation-dissipation theorem, because macro-

scopic electrodynamics is a statistical theory. In a classical
Starting point is the set of the classical macroscopic Maxtheory the noise term can only be dropped in the zero-
well equations for the electromagnetic field in an absorbingemperature limit,T—0, whereas in quantum theory it is
linear dielectric without free charges and currents always present due to vacuum noise. From these arguments,
the operator-valued fieldgndicated with hatsin quantum

GD(r,t) =0, X H(r,1), (2.1) electrodynamics can be regarded as obeying E2€)—
2.14),
B(r,t)=—3d,XE(r,1), (2.2 219
d;-D(r,t9) =0, (2.3 (?rXé(r,a))=—i%s(r,w)é(r,w)-l—uofn(r,w),
c
d,-B(r,tg)=0, (2.9 (2.18
D(r,t)=eoE(r,t) +P(r,t), (2.5 3, XE(r,m)=iwB(r,w), (2.19
t A~ ~
P(r,t)zgoJ dsx(r,t—s)E(r,s)+Py(r,t),  (2.6) dr-e0e (M w)E(r,w)=pn(r, ), (2.20
to
,-B(r,w)=0, 2.2
B(r,t)=uoH(r,1), (2.7) B (220
where the initial timet, may be set tdy=— . Introducing D(r,@)=g0e(r,0)E(r,0) +Pyr,0), (2.22
the Fourier transform of the electric-field strength according . .
to wherep,(r,w) andj,(r,») are the noise charge and current
densities,
+ oo
E(r,t):jﬁx dwexd —iwt]E(r,w) ;)n(r,w)Z—(?r-lsn(r,w), 2.23
+ o0 o .ooA
=j dwexd —iot]E(r,w)+c.c., (2.9 In(r, @)= —1oPyr,). (224
0

Quantization is accomplished by relating the current to
and the Fourier transforms of the other fields accordinglybosonic vector fields according teuo=c"?)
Egs.(2.)—(2.7) lead to

8 AT @)= —1wD(r.w), (2.9 o1, 0)= wZMﬂr,m
MoC” Y TEo
I, XE(r,m)=iwB(r,w), (2.10 \/ﬁ
o\~ f 2.2
d,-D(r,w)=0, 2.19) ® - g(r,w)f(r,w), (2.25
d;-B(r,w)=0, (2.12 [f(r,w),fT(l",w')]=5(r—r’)5(w—w')U, (2.26
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[f(r,0),f(r",0)]=[f(r,w),ff(r',0)]=0, (2.27

whereU is the unit 3x 3 matrix. The fieldﬁ(r,w) represent

the fundamental variables of the overall system. In the

Heisenberg picture they evolve as

froot=exgd—iow(t—t)f(rwt), (229
which is governed by the Hamiltonian
F|=f er dohefl(r,0)fr ). (2.29
0

The commutation relation®.26) and (2.27) imply that

[Jo(r, o)l )]

> %
—g(r,w)5(r—r")é(w—w'")U
TEQ

w

oc?
2
= Tsoa(r,w)ﬁ(r—r’)5(w—w’)U.

(2.30

From Egs.(2.18 and(2.19 it follows that E(r,w) satis-
fies the equation

2
. 1) N
A X XE(r,w)— —zg(r,w)E(r,w)
Cc

w2
Ho— —Ze(r,w)U
C

E(r,0) =i o (r,0)

(2.31

(Ho= 8, X 8,X = 8,9, — 9°U). Inversion of Eq(2.31) and the
use of Eq.(2.19 vyields

E(r,w):iwof dsG(r,s,0) j(sw), (2.32
B(r,w)=(iw) 19, X E(r, )

=M0ar><J dsG(r,s,0)-j (s w). (2.33

Here,G is the classical Green’s functidactually a second-
rank symmetric tensoithat satisfies the equation
-G(r,s,w)=46(r—s)U.

[ 9,0, —
(2.39

Note that G corresponds to the operato[r&rar—{(?r2
+ w?s(r,w)/c?}U] "1, which exists as a bounded Hilbert-
space operator if

2

ﬁz—i-w—s(r w)|U
r 02 !

lim [e(r,w)—1]=i 0, ,

[r|—c0

(2.39
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automatically fixing the boundary conditions @fat infinity
(cf. Ref.[16]).

The electric-field strength operator in the Sainger pic-
ure can then be represented in the fornjaf Eq. (2.8)]

E(r)zf:dw E(r,w)+H.c., (2.36

and the other field operators accordingly. Using the proper-
ties of G it can be verified that the standard equal-time com-
mutation relations of quantum electrodynamics fields are ful-
filled [20-22,28. Since the latter do not depend efr,w),

the case that,(r,w) (approximatelyvanishes in a certain
interval can be handled by means of a limiting procedure. It
is worth noting that the LN method has the advantage that
arbitrary inhomogeneous, anisotropic, amplifying, or mag-
netic matter can easily be included in the formalig28].

Ill. THE AUXILIARY FIELD METHOD AND ITS
RELATION TO THE LANGEVIN NOISE METHOD

A. Classical formalism

The AF method[27] starts from the zero-temperature
classical Maxwell equationd?(=0) and complements them
with appropriately chosen auxiliary fields. In order to facili-
tate a comparison with the LN method, we shall use a setup
where only Fourier components for positive arguments are
used and in addition we shall use a different gauge for the
fields. We assume that(r,t=0)=0, which can be verified
from linear-response theory. It excludes instantaneous surges
at the initial time. Then, withy'(r,t) =d,x(r,t),

AE(r,t)=c29, X B(r,t)— ﬁ dsx’'(r,t—s)E(r,s)

=29, X B(r,t) = J(r,t), (3.2

where J(r,t)=,P(r,t) is the polarization current density.
Since x(r,0)=0 we havethe factor 2 arises from changing
the range of the\ integral fromR in Ref.[27] to [0,0)]

X(r,t):zf;dx N Isin(ht) p(r,\), (3.2

X’(r,t)zzf:dx cogAt)v(r,\), (3.3

wherev(r,A)=0 for absorbing systems as considered here.
Note that

a
g (r,\)= Xv(r,)\) (3.9
(A=0). Next we define
Fa(r,t)=eoE(r,1), (3.5
1
F3(r,t)= WB(I’,'[) (36)
0
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and introduce the auxiliary fields Fo(r,N) = lim exp(it)Fo(r,\,t). (3.19
t—s—oo
t
Fo(r N )=~ \/s—oa(r,)\)J_wdSSIn)\(t—S)E(I’,S), On the other hand, settirtg=0 in Eq. (3.18 yields
3.7 o
t Fé(r,k)=Fo(r,h,0)+a(r,x)j dsexp(irs)Fy(r,s).
F4(r,)\,t)=—\/s_0cr(r,)\)J dscos\(t—s)E(r,s), o (3.20
38 With
where
Fo(r,\,t)=exp(—iXt)Fy(r,\) (3.2)
2v(r,\)=a(r,\)%,  o(r,\)=0, (3.9

Egs.(3.11)—(3.14 are then replaced by
and note that

For A, —%)=Fy(r A, =%)=0. (310 aD(r. )=, H(r.1), (3.22
It can be proved27] that the set of equations aB(r,t) ==, XE(r,1), (3.23
% F5(r N t) =NFy(r,\, 1), (3.29
dF1(r,t)=ca, X |:3(r,t)+f0 dNa(r,N)Fa(r,\, 1),
(3.1 aF4(r,\, 1) == NF5(r,\ 1), (3.29
dtFo(r, N, 1) =NFy(r,\, 1), (319  Where

giF(r,t)=—Cd X Fy(r 1), (3.13 D(F,I)ZSOE(r,t)anoft dsx(r.t—S)E(r.)+P' (1),

AF(r N )= —NFao(r, A )= o(r MFy(r,t) (319 h (3.2

together with the initial condition$3.10 is equivalent to Here,
Maxwell's equations, and the quantity

Sz%fdr

+%J dffo dN[Fo(r, )2+ F4(r,\,)?] (319  can be regarded as being the noise polarization, with

P/(r,t)= Jg—of d\ X~ Lo(r,\)[Cog Nt)FA(r,\)

1
eoE(r,1)2+ —B(r,1)?
o + SN LT (3.27

is conserved in time. Note th&tcoincides with the electro- I (rH)=aP'(r,n

magnetic energy for vanishing.
Our aim is to find a quantized version of Eq8.11)— =\/s_of d\ a(M)[Sin(Nt)F5(r,\) —cog At)F(r,\)]
(3.14). Since the initial conditior{3.10 then loses its mean-
ing, we now drop it. Setting (3.28
Fo(r,\,t)=F4(r,\,t)—iFy(r,\,t), (3.19 being the associated noise current density. In E327) and
Egs. (3.28 we have sefj=F,—iF; with F, and F, real.
we have Note that the equations of motion for the primed auxiliary

. fields are decoupled from those of the electromagnetic fields.
AFo(r,\,t)=—iNFg(r,\,t)—a(r,\)Fy(r,t). (3.19)

Its solution can be written as B. Hamilton formalism and quantization
) We can interpret Eqg3.22—(3.25 as a set of equations
exp(int)Fo(r,\,t) suitable for transferring to quantum theory. The equations of
" motion for theF' fields describe harmonic motions and are
= Fé(r,)\)—a(r,)\)f dsexp(iAs)F(r,s). readily quantized, thus leading to a quantum noise contribu-

tion in the field equations. However, there actually exists a
(3.18 Hamiltonian formalism, generating the full set of field equa-
tions, which can then be quantizE26,27. The basic equa-
Since the second term on the right-hand side vanishds astions are Eqs(3.11)—(3.14), which can be written in the
— —oo, we obtain(for the limit, see Appendix compact form
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0 Nem
Npe O

Fe

dF=NF=
t Fm

, (3.29

whereF, consists ofF; andF, andF,, of F3 andF,.

In order to show the equivalence to the LN method, we

adopt a generalization of the temporal or Weyl gatthe T

gauge in Ref.[26]) instead of the generalized Coulomb

gauge in Ref[27]. Thus we set

Fo= — 0= —at(z), (3.30
S

which implies that
E=—de, V%, (3.32
B=4d,Xe, %, (3.33
Fo=—di&,, (3.39
Fi=c&+\&,. (3.39

Obviously,A=¢, Y%, is the vector potential. The Lagrang-
ian generating the equations of motion is

L= %(0')t§e v&té‘e)_ %(Nmege ) Nme§e>
= %(atfe vat§e>_ %<He§ea§e>- (3.39

where the(real) inner product is defined according to

<f,g>=80f dr fl(r)'gl(r)+fo dN fo(r,N) - go(r,N\) |.
(3.39
The canonical momentum is
[ m(r) _(5t§1
" mrn) " lag) (339
thusE= — &, ?a;, and the Hamiltonian becomes
H:%(“evﬂ'e>+%<Nme§eaNme§e>:%<77ey77e>+%<He§ea§e>-
(3.39
Here (cf. Ref.[27])
. c?Ho+ x'(r,0) f dANo(r,\)---
He=NpeNme= 0 )
No(r,\) A2
(3.40

whereHy=4,d,— an is a non-negative self-adjoint operator

in He=H;®H,, and H, =L?R3,dr;R%, H,=L?R3
XR*,drd\;R%). Note that the off-diagonal terms in Eq.

(3.40 describe the coupling of the electromagnetic and aux-
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iliary fields, but that there is also a shift tergi(r,0), and it
can be verified thatl equals the conserved quantify
Quantization is achieved by setting

[&(r),m(r")]=ikd(r—r")U, (3.41

[&(r\),m(r’ N)]=ih8(r—1")S(N—\")U,
(3.42

all other commutators being zero. The Heisenberg equations
of motion are given according to Eg8.11)—(3.14 [or Eq.
(3.29]. Defining IAZO(r,)\,t) according to Eq(3.16), it again
satisfies the(operator valuedEq. (3.17) with the solution
according to Eq(3.18:

Fo(r,\,t)=exd —iMt]FH(r,N)—o(r,\)

xft dsexd —iN(t—s)]Fy(r,s),

(3.43
where, according to Eq3.19 together with Eq(3.16),
Fo(rN)=F4(r,\)—iF5(r,\), (3.44

with F},(r,\,t) andF5 (r,\) self-adjoint. Insertion of Eq.
(3.43 in the equations of motion results into the operator-
valued Eqs(3.22—(3.27. According to Eq.(3.28, the op-
erator of the noise current density reads

J(rt= \/s—of d\ o(M)[Sin(At)F5(r,\)

—cog A t)E4(r,\)]. (3.45

Using Eqgs.(3.41) and(3.42), we find the(equal-timg com-
mutation relations

[Iig(r,)\),lfg(r’,)\’)]z—ih)x&(r—r’)&()\—)\’)u
(3.46
and

. . AN?
[J'(r,\), ' T(r' A= — 208 (M) 8(r=r") 8 =\")U.

(3.47

Thus, we identifyj’(r,)\) with the Langevin noise current in
Sec. I,

J'(r,N)=ju(r,\). (3.48

With this choice, Eq.(3.47 exactly equals Eq.(2.30.
Hence, the AF formalism is equivalent with the LN formal-
ism. Introducing creation and annihilation operators accord-
ing to

Fo(r,N)=i(AN2)Y4bB(r,\)—bT(r,\)],  (3.49

Fo(r,N)=(AN2)Yb(r,\)+bT(r,\)], (3.50
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we have search on Mattgrwith financial support from the Neder-
landse Organisatie voor Wetenschappelijk OnderzZbith-
[B(rA),BI(r A= 8(r—r")8(A—=\")U, (3.51) erlands Organization for Scientific Resegrch

and hence APPENDIX: THE RELATION BETWEEN F 4 AND F}

- “ C1on The existence of the limit
f(r,N)=—b(r,N\)=—(2AN) " "F4(r,N).  (3.52

IV. DISCUSSION Fé(l’,)\)= lim exp(int)Fo(r,\,t) (A1)

e

In the LN formalism, the basic ingredient is the identifi-
cation of the(usually discardednoise polarization in Eq. suggests thaf(r,\,t) is asymptotically free, i.e., its motion
(2.6) or Eq.(2.13 as the fundamental field variable of the becomes decoupled from that of the electromagnetic fields as
theory from which all properties of the electromagnetic fieldt— — . Such an asymptotic behavior can be studied more
can be derived by means of EqR.23, (2.24, (2.32, precisely in terms of Mgller wave operators, as we shall now
(2.33, and Maxwell’'s equation&.9) — (2.14). For any tem-  priefly discuss. We write
perature, the fluctuation-dissipation theorem is then satisfied,
and the classical, statistical noise polarization can be re-
garded as being an operator-valued quantity in quantum
theory. Then one can show that the corr@egfual-time QED
commutation relations are satisfied.

The AF formalism starts from Maxwell’s equations with- N= 0 0 0 A
out the noise polarization. Instead, auxiliary fields are intro- —Co, X 0
duced whose equations of motion eventually decouple from —o(r\) —\
those of the electromagnetic fields leaving behind a source
term in Ampee’s law. The formalism can then be cast into a =Ng+ Ny, (A2)
Hamiltonian form, which, upon quantization, features a noise
current with the same commutation properties as in the LNyhere
formalism. For ease of comparison, a generalized temporal
gauge has been adopted, but the actual choice does of course

not affect the equal-time commutatc(r),B(r')]. 0
It should be pointed out that E¢2.31, which plays a 0 0 0 A\

crucial role in the LN concept, can be related to the eigen- No= 0 o ol (A3)
0

0 0 coX fdxa(r,h)~-~
0

o o

value problem associated with, in the AF formalism. In-
deed, from Eqs(3.11) — (3.14) we have 0 -0

FZFo(t) = — HeFq(t). (4.1)

Thus, in the stationary solutioifry(t) =exg —iwt]F.(w),
Fo(w) solves the eigenvalue problem N,= 0 0 0 0 . (A4)

HeFeo( @)= 0?Fo(w), (4.2

where the first of these equations,
Let

[c®Ho+ x'(0)]F1(w)+ j:d)\ No(N)Fa(N, w)

— .2

=wF(w), 4.3 P (A5)
corresponds to Eq2.31), given the relation(3.19 between
Fo and F;. As shown in the Appendix, this relation has a

precise scattering theoretical background.

o O O O©O
o O +~» O
o O O O
= O O O

be the projector upon the auxiliary fields. Then it can be

ACKNOWLEDGMENTS shown by standard methods that the Mgller operators
A. T. was sponsored by the Stichting voor Fundamenteel Q.= lim exp(—Nt)expNot)Paux (AB)
Onderzoek der MateriéFoundation for Fundamental Re- to*o
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exist in the strong sensgor the underlying Hilbert space . +o
and other details, cf27]). A quite more elaborate analysis ~ %F(0)=P,F(0) + fo dtPaux
shows that the adjoint®?* can also be given as strong lim-

its, i.e., X exp(— Ngt)(N—Ng)exp(Nt)F(0)
Q1= lim P —Not Nt A7 e

57 M PaeX=RoDeRND - (A7) ~Pa,F(0)+ [ dtPLex - NONF(D),

exist, implying that (A9)
t—xo and working things out, this leads to
PaF(t) ~ exp(Not)Q%F(0), (A8) )
Fo\ [(QEF)2| [Fy(0)

i.e., the motion of the auxiliary fields becomes decoupled Fy) L (Q*F),) | F4(0)
from that of the electromagnetic ones for large times. Physi-
cally, this can be understood by observing that, for a finite 0 —Sin(As)
dielectric, the auxiliary fields do not propagdtkey are con- + _md cog\S) o(MFy(s).  (A10)

fined to the dielectric whereas the electromagnetic fields

propagate away. This gives a rigorous underpinning of the Following the procedure given above, one can show an
existence of the limits in Eq(3.19. We can arrive at Eq. equivalent expression to E¢3.20, valid in the quantum
(3.20, starting from Eq(A8), noting that case.
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