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Equivalence of the Langevin and auxiliary-field quantization methods for absorbing dielectrics
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L. Knöll, S. Scheel,† and D.-G. Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

~Received 2 November 2000; published 12 March 2001!

Recently two methods have been developed for the quantization of the electromagnetic field in general
dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin
current in Maxwell’s equations@T. Gruner and D.-G. Welsch, Phys. Rev. A53, 1818~1996!; Ho Trung Dung,
L. Knöll, and D.-G. Welsch, Phys. Rev. A57, 3931~1998!; S. Scheel, L. Kno¨ll, and D.-G. Welsch, Phys. Rev.
A 58, 700 ~1998!#, whereas the second makes use of a set of auxiliary fields, followed by a canonical
quantization procedure@A. Tip, Phys. Rev. A57, 4818~1998!#. We show that both approaches are equivalent.
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I. INTRODUCTION

With the advent of modern optical materials, such as
tical fibers and photonic crystals, the problem of quantizat
of the electromagnetic field in dielectrics has become an
portant subject and much activity has been taking place
this field. Quantization is required to describe the decay
embedded atoms~for specific cases, see Refs.@1,2#!, the Ca-
simir effect@3,4#, and other nonclassical phenomena such
the propagation of entangled states through dielectrics@5#.
We also mention the generation of x-ray transition radiat
by fast electrons traveling through layered dielectrics@6#.

In the case of linear conservative dielectrics, quantizat
is well-known for systems, where the permittivity~electric
permeability! « is a real constant@7# or a real function of
space,«5«(r ) @8,9#. Nonlinear dielectrics are discussed
Ref. @10#. For dispersing and truly absorbing media the si
ation is more complicated, because the permittivity is a co
plex function of frequency and varies with space in gene
i.e., «5«(r ,v). Progress in this field has been fairly rece

Two basic approaches can be distinguished. The firs
based on the Hopfield model of a bulk dielectric@11#. The
quantized electromagnetic field is coupled to a material s
tem described by a harmonic-oscillator model, and
Hamiltonian of the total system is diagonalized@12#. A
drawback is that it becomes rather cumbersome if spa
inhomogeneities are present@13#. Also the identification of
the permittivity is not trivial@14,15#.

The second approach starts off from the classical phen
enological Maxwell equations, featuring a general spatia
inhomogeneous, complex, frequency-dependent permitti
«(r ,v) satisfying the Kramers-Kronig relations. It has th
advantage that the really measured values of the permitt
can be used for the theoretical description of quantized l
in media. For example, in the case of photonic crystals m
up from dielectric objects~scatterers! in a conservative, ho-
mogeneous background~such as vacuum!, «(r ,v) is known
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†Electronic address: scheel@tpi.uni-jena.de
1050-2947/2001/63~4!/043806~7!/$20.00 63 0438
-
n
-

in
f

s

n

n

-
-
l,
.
is

s-
e

al

-
y
ty

ty
t
e

at the outset. Absorption is often undesirable, in particula
one is interested in band-gap phenomena. In fact absorp
prohibits the formation of the latter@16#. Band-gap photonic
crystals offer many interesting technological applicatio
@17# but require a large dielectric contrast between the s
terers and background. This can be accomplished by u
small metal spheres showing a Drude-type behavior, wh
the real part of the permittivity can acquire large negat
values @18#. However, such systems are always somew
absorbing. On the positive side, absorption may be adva
geous in the case of transition radiation, where it can be u
to suppress undesired frequencies@6#.

There have been two concepts of quantization of the p
nomenological Maxwell field for general dispersing and a
sorbing linear dielectrics. The first@referred to as the Lange
vin noise ~LN! concept# is based upon the introduction o
Langevin noise current~and charge! densities, as dictated b
the fluctuation-dissipation theorem, into the classical Ma
well equations, which can then be transferred to quant
theory by conversion of the electromagnetic field quantit
into operators. After some earlier work@14,19#, restricted to
specific simple geometries, a general formalism was put
ward by some of us@20–22#. In this scheme the dyadic
Green’s function associated with the classical~inhomoge-
neous! Helmholtz equation plays a prominent role. Its pro
erties come into play by deriving the equal-time commu
tors for the fields, given those of the noise current opera
In Ref. @21# the case of a planar interface and in Refs.@2,23#
the spontaneous decay in a spherical cavity is worked out
more involved situations can also be handled. Basically
Green’s function of the classical problem must be calculat
For this, general methods and a variety of specific examp
are considered in Ref.@24#. Efficient methods have been de
veloped @such as an adaptation of the Korringa-Koh
Rostoker~KKR! approach of solid-state physics# for the pho-
tonic crystal case@25#.

The second concept@referred to as the auxiliary field~AF!
concept# developed by one of us~A.T.! @26,27# also starts off
from the classical phenomenological Maxwell equatio
Here, the introduction of a set of auxiliary fields~instead of a
noise current! allows the replacement of Maxwell’s equa
©2001 The American Physical Society06-1
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tions, which features a time convolution term relating t
polarization to the electric field, by a new set of equations
the combined set of electromagnetic and auxiliary fields
without time convolutions. For the so extended system
conserved quantity, bilinear in all fields, generalizing t
electromagnetic energy, exists. Maxwell’s equations are
trieved by setting the initial auxiliary fields equal to zer
The system can then be quantized and the conserved qua
becomes the Hamiltonian. But now the initial auxilia
fields, being operators, can no longer be set equal to ze

Although the two concepts of quantization of the pheno
enological Maxwell field look quite different at first glanc
they are fully equivalent, as we show in the present pa
For this purpose, we first review in Sec. II the basic formu
of the LN concept. After reviewing the AF concept, we th
prove in Sec. III that the AF concept precisely leads to
noise current operator in the LN concept. Some conclud
remarks are given in Sec. IV.

II. THE LANGEVIN NOISE METHOD

Starting point is the set of the classical macroscopic M
well equations for the electromagnetic field in an absorb
linear dielectric without free charges and currents

] tD~r ,t !5] r3H~r ,t !, ~2.1!

] tB~r ,t !52] r3E~r ,t !, ~2.2!

] r•D~r ,t0!50, ~2.3!

] r•B~r ,t0!50, ~2.4!

D~r ,t !5«0E~r ,t !1P~r ,t !, ~2.5!

P~r ,t !5«0E
t0

t

dsx~r ,t2s!E~r ,s!1Pn~r ,t !, ~2.6!

B~r ,t !5m0H~r ,t !, ~2.7!

where the initial timet0 may be set tot052`. Introducing
the Fourier transform of the electric-field strength accord
to

E~r ,t !5E
2`

1`

dv exp@2 ivt#E~r ,v!

5E
0

1`

dv exp@2 ivt#E~r ,v!1c.c., ~2.8!

and the Fourier transforms of the other fields according
Eqs.~2.1!–~2.7! lead to

] r3H~r ,v!52 ivD~r ,v!, ~2.9!

] r3E~r ,v!5 ivB~r ,v!, ~2.10!

] r•D~r ,v!50, ~2.11!

] r•B~r ,v!50, ~2.12!
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D~r ,v!5«0«~r ,v!E~r ,v!1Pn~r ,v!, ~2.13!

B~r ,v!5m0H~r ,v!, ~2.14!

where

«~r ,v!511x~r ,v!, ~2.15!

x~r ,v!5E
0

`

dt exp@ ivt#x~r ,t !. ~2.16!

Note that for absorbing media

«~r ,v!5«R~r ,v!1 i« I~r ,v!, « I~r ,v!>0. ~2.17!

In the LN concept@20–22,28#, Eqs.~2.9!–~2.14! @or Eqs.
~2.1!–~2.7!# are considered as a set of equations for the e
tromagnetic field supplemented with a noise polarizat
Pn(r ,v) @29#. Its introduction arises from the necessity
fulfill the fluctuation-dissipation theorem, because mac
scopic electrodynamics is a statistical theory. In a class
theory the noise term can only be dropped in the ze
temperature limit,T→0, whereas in quantum theory it i
always present due to vacuum noise. From these argum
the operator-valued fields~indicated with hats! in quantum
electrodynamics can be regarded as obeying Eqs.~2.9!–
~2.14!,

] r3B̂~r ,v!52 i
v

c2
«~r ,v!Ê~r ,v!1m0ĵn~r ,v!,

~2.18!

] r3Ê~r ,v!5 ivB̂~r ,v!, ~2.19!

] r•«0«~r ,v!Ê~r ,v!5 r̂n~r ,v!, ~2.20!

] r•B̂~r ,v!50, ~2.21!

D̂~r ,v!5«0«~r ,v!Ê~r ,v!1P̂n~r ,v!, ~2.22!

wherer̂n(r ,v) and ĵn(r ,v) are the noise charge and curre
densities,

r̂n~r ,v!52] r•P̂n~r ,v!, ~2.23!

ĵn~r ,v!52 ivP̂n~r ,v!. ~2.24!

Quantization is accomplished by relating the current
bosonic vector fields according to («0m05c22)

ĵn~r ,v!5
v

m0c2
A \

p«0
« I~r ,v! f̂~r ,v!

5vA\«0

p
« I~r ,v! f̂~r ,v!, ~2.25!

@ f̂~r ,v!, f̂†~r 8,v8!#5d~r2r 8!d~v2v8!U, ~2.26!
6-2
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@ f̂~r ,v!, f̂~r 8,v8!#5@ f̂†~r ,v!, f̂†~r 8,v8!#50, ~2.27!

whereU is the unit 333 matrix. The fieldsf̂(r ,v) represent
the fundamental variables of the overall system. In
Heisenberg picture they evolve as

f̂~r ,v,t !5exp@2 iv~ t2t8!# f̂~r ,v,t8!, ~2.28!

which is governed by the Hamiltonian

Ĥ5E drE
0

`

dv \v f̂†~r ,v! f̂~r ,v!. ~2.29!

The commutation relations~2.26! and ~2.27! imply that

@ ĵn~r ,v!, ĵn
†~r 8,v8!#

5S v

m0c2D 2
\

p«0
« I~r ,v!d~r2r 8!d~v2v8!U

5
\v2

p
«0« I~r ,v!d~r2r 8!d~v2v8!U. ~2.30!

From Eqs.~2.18! and ~2.19! it follows that Ê(r ,v) satis-
fies the equation

] r3] r3Ê~r ,v!2
v2

c2
«~r ,v!Ê~r ,v!

5FH02
v2

c2
«~r ,v!UG•Ê~r ,v!5 ivm0ĵn~r ,v!

~2.31!

(H05] r3] r35] r] r2] r
2U). Inversion of Eq.~2.31! and the

use of Eq.~2.19! yields

Ê~r ,v!5 ivm0E dsG~r ,s,v!• ĵn~s,v!, ~2.32!

B̂~r ,v!5~ iv!21] r3Ê~r ,v!

5m0] r3E dsG~r ,s,v!• ĵn~s,v!. ~2.33!

Here,G is the classical Green’s function~actually a second-
rank symmetric tensor! that satisfies the equation

H ] r] r2F ] r
21

v2

c2
«~r ,v!GUJ •G~r ,s,v!5d~r2s!U.

~2.34!

Note that G corresponds to the operator@] r] r2$] r
2

1v2«(r ,v)/c2%U#21, which exists as a bounded Hilber
space operator if

lim
ur u→`

@«~r ,v!21#5 i 01 , ~2.35!
04380
e

automatically fixing the boundary conditions ofG at infinity
~cf. Ref. @16#!.

The electric-field strength operator in the Schro¨dinger pic-
ture can then be represented in the form of@cf. Eq. ~2.8!#

Ê~r !5E
0

`

dv Ê~r ,v!1H.c., ~2.36!

and the other field operators accordingly. Using the prop
ties ofG it can be verified that the standard equal-time co
mutation relations of quantum electrodynamics fields are
filled @20–22,28#. Since the latter do not depend on«(r ,v),
the case that« I(r ,v) ~approximately! vanishes in a certainv
interval can be handled by means of a limiting procedure
is worth noting that the LN method has the advantage t
arbitrary inhomogeneous, anisotropic, amplifying, or ma
netic matter can easily be included in the formalism@28#.

III. THE AUXILIARY FIELD METHOD AND ITS
RELATION TO THE LANGEVIN NOISE METHOD

A. Classical formalism

The AF method@27# starts from the zero-temperatur
classical Maxwell equations (Pn50) and complements them
with appropriately chosen auxiliary fields. In order to faci
tate a comparison with the LN method, we shall use a se
where only Fourier components for positive arguments
used and in addition we shall use a different gauge for
fields. We assume thatx(r ,t50)50, which can be verified
from linear-response theory. It excludes instantaneous su
at the initial time. Then, withx8(r ,t)5] tx(r ,t),

] tE~r ,t !5c2] r3B~r ,t !2E
2`

t

dsx8~r ,t2s!E~r ,s!

5c2] r3B~r ,t !2J~r ,t !, ~3.1!

where J(r ,t)5] tP(r ,t) is the polarization current density
Sincex(r ,0)50 we have@the factor 2 arises from changin
the range of thel integral fromR in Ref. @27# to @0,̀ )]

x~r ,t !52E
0

`

dl l21sin~lt !n~r ,l!, ~3.2!

x8~r ,t !52E
0

`

dl cos~lt !n~r ,l!, ~3.3!

wheren(r ,l)>0 for absorbing systems as considered he
Note that

« I~r ,l!5
p

l
n~r ,l! ~3.4!

(l>0). Next we define

F1~r ,t !5A«0E~r ,t !, ~3.5!

F3~r ,t !5
1

Am0

B~r ,t ! ~3.6!
6-3
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and introduce the auxiliary fields

F2~r ,l,t !52A«0 s~r ,l!E
2`

t

dssinl~ t2s!E~r ,s!,

~3.7!

F4~r ,l,t !52A«0 s~r ,l!E
2`

t

dscosl~ t2s!E~r ,s!,

~3.8!

where

2n~r ,l!5s~r ,l!2, s~r ,l!>0, ~3.9!

and note that

F2~r ,l,2`!5F4~r ,l,2`!50. ~3.10!

It can be proved@27# that the set of equations

] tF1~r ,t !5c] r3F3~r ,t !1E
0

`

dls~r ,l!F4~r ,l,t !,

~3.11!

] tF2~r ,l,t !5lF4~r ,l,t !, ~3.12!

] tF3~r ,t !52c] r3F1~r ,t !, ~3.13!

] tF4~r ,l,t !52lF2~r ,l,t !2s~r ,l!F1~r ,t ! ~3.14!

together with the initial conditions~3.10! is equivalent to
Maxwell’s equations, and the quantity

E5 1
2 E dr F«0E~r ,t !21

1

m0
B~r ,t !2G

1 1
2 E drE

0

`

dl@F2~r ,l,t !21F4~r ,l,t !2# ~3.15!

is conserved in time. Note thatE coincides with the electro
magnetic energy for vanishingx.

Our aim is to find a quantized version of Eqs.~3.11!–
~3.14!. Since the initial condition~3.10! then loses its mean
ing, we now drop it. Setting

F0~r ,l,t !5F4~r ,l,t !2 iF2~r ,l,t !, ~3.16!

we have

] tF0~r ,l,t !52 ilF0~r ,l,t !2s~r ,l!F1~r ,t !. ~3.17!

Its solution can be written as

exp~ ilt !F0~r ,l,t !

5F08~r ,l!2s~r ,l!E
2`

t

dsexp~ ils!F1~r ,s!.

~3.18!

Since the second term on the right-hand side vanishest
→2`, we obtain~for the limit, see Appendix!
04380
s

F08~r ,l!5 lim
t→2`

exp~ ilt !F0~r ,l,t !. ~3.19!

On the other hand, settingt50 in Eq. ~3.18! yields

F08~r ,l!5F0~r ,l,0!1s~r ,l!E
2`

0

dsexp~ ils!F1~r ,s!.

~3.20!

With

F08~r ,l,t !5exp~2 ilt !F08~r ,l! ~3.21!

Eqs.~3.11!–~3.14! are then replaced by

] tD~r ,t !5] r3H~r ,t !, ~3.22!

] tB~r ,t !52] r3E~r ,t !, ~3.23!

] tF28~r ,l,t !5lF48~r ,l,t !, ~3.24!

] tF48~r ,l,t !52lF28~r ,l,t !, ~3.25!

where

D~r ,t !5«0E~r ,t !1«0E
2`

t

dsx~r ,t2s!E~r ,s!1P8~r ,t !.

~3.26!

Here,

P8~r ,t !5A«0E dl l21s~r ,l!@cos~lt !F28~r ,l!

1sin~lt !F48~r ,l!# ~3.27!

can be regarded as being the noise polarization, with

J8~r ,t !5] tP8~r ,t !

5A«0E dl s~l!@sin~lt !F28~r ,l!2cos~lt !F48~r ,l!#

~3.28!

being the associated noise current density. In Eqs.~3.27! and
Eqs. ~3.28! we have setF085F482 iF28 with F28 and F48 real.
Note that the equations of motion for the primed auxilia
fields are decoupled from those of the electromagnetic fie

B. Hamilton formalism and quantization

We can interpret Eqs.~3.22!–~3.25! as a set of equation
suitable for transferring to quantum theory. The equations
motion for theF8 fields describe harmonic motions and a
readily quantized, thus leading to a quantum noise contri
tion in the field equations. However, there actually exist
Hamiltonian formalism, generating the full set of field equ
tions, which can then be quantized@26,27#. The basic equa-
tions are Eqs.~3.11!—~3.14!, which can be written in the
compact form
6-4
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] tF5NF5S 0 Nem

Nme 0 D S Fe

Fm
D , ~3.29!

whereFe consists ofF1 andF2 andFm of F3 andF4.
In order to show the equivalence to the LN method,

adopt a generalization of the temporal or Weyl gauge~the T
gauge in Ref.@26#! instead of the generalized Coulom
gauge in Ref.@27#. Thus we set

Fe52] tje52] tS j1

j2
D , ~3.30!

Fm5S F3

F4
D 52NmeS j1

j2
D , ~3.31!

which implies that

E52] t«0
21/2j1 , ~3.32!

B5] r3«0
21/2j1 , ~3.33!

F252] tj2 , ~3.34!

F45sj11lj2 . ~3.35!

Obviously,A5«0
21/2j1 is the vector potential. The Lagrang

ian generating the equations of motion is

L5 1
2 ^] tje ,] tje&2 1

2 ^Nmeje ,Nmeje&

5 1
2 ^] tje ,] tje&2 1

2 ^Heje ,je&, ~3.36!

where the~real! inner product is defined according to

^f,g&5«0E dr F f1~r !•g1~r !1E
0

`

dl f2~r ,l!•g2~r ,l!G .
~3.37!

The canonical momentum is

pe5S p1~r !

p2~r ,l! D5S ] tj1

] tj2
D , ~3.38!

thusE52«0
21/2p1, and the Hamiltonian becomes

H5 1
2 ^pe ,pe&1 1

2 ^Nmeje ,Nmeje&5 1
2 ^pe ,pe&1 1

2 ^Heje ,je&.
~3.39!

Here ~cf. Ref. @27#!

He5Nme* Nme5S c2H01x8~r ,0! E
0

`

dl ls~r ,l!•••

ls~r ,l! l2
D ,

~3.40!

whereH05] r] r2] r
2U is a non-negative self-adjoint operat

in He5H1% H2, and H1 5L2(R3,dr ;R3), H25L2(R3

3R1,drdl;R3). Note that the off-diagonal terms in Eq
~3.40! describe the coupling of the electromagnetic and a
04380
e

-

iliary fields, but that there is also a shift termx8(r ,0), and it
can be verified thatH equals the conserved quantityE.

Quantization is achieved by setting

@ ĵ1~r !,p̂1~r 8!#5 i\d~r2r 8!U, ~3.41!

@ ĵ2~r ,l!,p̂2~r 8,l8!#5 i\d~r2r 8!d~l2l8!U,
~3.42!

all other commutators being zero. The Heisenberg equat
of motion are given according to Eqs.~3.11!–~3.14! @or Eq.
~3.29!#. Defining F̂0(r ,l,t) according to Eq.~3.16!, it again
satisfies the~operator valued! Eq. ~3.17! with the solution
according to Eq.~3.18!:

F̂0~r ,l,t !5exp@2 ilt#F̂08~r ,l!2s~r ,l!

3E
2`

t

dsexp@2 il~ t2s!#F̂1~r ,s!,

~3.43!

where, according to Eq.~3.19! together with Eq.~3.16!,

F̂08~r ,l!5F̂48~r ,l!2 i F̂28~r ,l!, ~3.44!

with F̂2,48 (r ,l,t) and F̂2,48 (r ,l) self-adjoint. Insertion of Eq.
~3.43! in the equations of motion results into the operat
valued Eqs.~3.22!–~3.27!. According to Eq.~3.28!, the op-
erator of the noise current density reads

Ĵ8~r ,t !5A«0E dl s~l!@sin~lt !F̂28~r ,l!

2cos~lt !F̂48~r ,l!#. ~3.45!

Using Eqs.~3.41! and ~3.42!, we find the~equal-time! com-
mutation relations

@ F̂48~r ,l!,F̂28~r 8,l8!#52 i\ld~r2r 8!d~l2l8!U
~3.46!

and

@ Ĵ8~r ,l!,Ĵ8†~r 8,l8!#5
\l2

p
«0« I~r ,l!d~r2r 8!d~l2l8!U.

~3.47!

Thus, we identifyĴ8(r ,l) with the Langevin noise current in
Sec. II,

Ĵ8~r ,l!5 ĵn~r ,l!. ~3.48!

With this choice, Eq.~3.47! exactly equals Eq.~2.30!.
Hence, the AF formalism is equivalent with the LN forma
ism. Introducing creation and annihilation operators acco
ing to

F̂28~r ,l!5 i ~\l/2!1/2@ b̂~r ,l!2b̂†~r ,l!#, ~3.49!

F̂48~r ,l!5~\l/2!1/2@ b̂~r ,l!1b̂†~r ,l!#, ~3.50!
6-5
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we have

@ b̂~r ,l!,b̂†~r 8,l8!#5d~r2r 8!d~l2l8!U, ~3.51!

and hence

f̂~r ,l!52b̂~r ,l!52~2\l!21/2F̂08~r ,l!. ~3.52!

IV. DISCUSSION

In the LN formalism, the basic ingredient is the identi
cation of the~usually discarded! noise polarization in Eq.
~2.6! or Eq. ~2.13! as the fundamental field variable of th
theory from which all properties of the electromagnetic fie
can be derived by means of Eqs.~2.23!, ~2.24!, ~2.32!,
~2.33!, and Maxwell’s equations~2.9! – ~2.14!. For any tem-
perature, the fluctuation-dissipation theorem is then satis
and the classical, statistical noise polarization can be
garded as being an operator-valued quantity in quan
theory. Then one can show that the correct~equal-time! QED
commutation relations are satisfied.

The AF formalism starts from Maxwell’s equations with
out the noise polarization. Instead, auxiliary fields are int
duced whose equations of motion eventually decouple fr
those of the electromagnetic fields leaving behind a sou
term in Ampère’s law. The formalism can then be cast into
Hamiltonian form, which, upon quantization, features a no
current with the same commutation properties as in the
formalism. For ease of comparison, a generalized temp
gauge has been adopted, but the actual choice does of c
not affect the equal-time commutator@Ê(r ),B̂(r 8)#.

It should be pointed out that Eq.~2.31!, which plays a
crucial role in the LN concept, can be related to the eig
value problem associated withHe in the AF formalism. In-
deed, from Eqs.~3.11! – ~3.14! we have

] t
2Fe~ t !52HeFe~ t !. ~4.1!

Thus, in the stationary solutionFe(t)5exp@2ivt#Fe(v),
Fe(v) solves the eigenvalue problem

HeFe~v!5v2Fe~v!, ~4.2!

where the first of these equations,

@c2H01x8~0!#F1~v!1E
0

`

dl ls~l!F2~l,v!

5v2F1~v!, ~4.3!

corresponds to Eq.~2.31!, given the relation~3.19! between
F0 and F08 . As shown in the Appendix, this relation has
precise scattering theoretical background.

ACKNOWLEDGMENTS

A. T. was sponsored by the Stichting voor Fundamen
Onderzoek der Materie~Foundation for Fundamental Re
04380
d,
e-
m

-
m
e

e
N
al
rse

-

el

search on Matter! with financial support from the Neder
landse Organisatie voor Wetenschappelijk Onderzoek~Neth-
erlands Organization for Scientific Research!.

APPENDIX: THE RELATION BETWEEN F 0 AND F08

The existence of the limit

F08~r ,l!5 lim
t→2`

exp~ ilt !F0~r ,l,t ! ~A1!

suggests thatF0(r ,l,t) is asymptotically free, i.e., its motion
becomes decoupled from that of the electromagnetic field
t→2`. Such an asymptotic behavior can be studied m
precisely in terms of Møller wave operators, as we shall n
briefly discuss. We write

N5S 0 0 c] r3 E
0

`

dl s~r ,l!•••

0 0 0 l

2c] r3 0 0 0

2s~r ,l! 2l 0 0

D
5N01N1 , ~A2!

where

N05S 0 0 c] r3 0

0 0 0 l

2c] r3 0 0 0

0 2l 0 0

D , ~A3!

N15S 0 0 0 E
0

`

dl s~r ,l!•••

0 0 0 0

0 0 0 0

2s~r ,l! 0 0 0

D . ~A4!

Let

Paux5S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

D ~A5!

be the projector upon the auxiliary fields. Then it can
shown by standard methods that the Møller operators

V65 lim
t→6`

exp~2Nt !exp~N0t !Paux ~A6!
6-6
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exist in the strong sense~for the underlying Hilbert space
and other details, cf.@27#!. A quite more elaborate analys
shows that the adjointsV6* can also be given as strong lim
its, i.e.,

V6* 5 lim
t→6`

Pauxexp~2N0t !exp~Nt ! ~A7!

exist, implying that

PauxF~ t ! ;
t→6`

exp~N0t !V6* F~0!, ~A8!

i.e., the motion of the auxiliary fields becomes decoup
from that of the electromagnetic ones for large times. Ph
cally, this can be understood by observing that, for a fin
dielectric, the auxiliary fields do not propagate~they are con-
fined to the dielectric!, whereas the electromagnetic field
propagate away. This gives a rigorous underpinning of
existence of the limits in Eq.~3.19!. We can arrive at Eq
~3.20!, starting from Eq.~A8!, noting that
v
s.

,

et

04380
d
i-
e

e

V6* F~0!5PauxF~0!1E
0

6`

dt Paux

3exp~2N0t !~N2N0!exp~Nt !F~0!

5PauxF~0!1E
0

6`

dt Pauxexp~2N0t !N1F~ t !,

~A9!

and working things out, this leads to

S F28

F48
D 5S ~V2* F!2

~V2* F!4
D 5S F2~0!

F4~0! D
1E

2`

0

dsS 2sin~ls!

cos~ls! Ds~l!F1~s!. ~A10!

Following the procedure given above, one can show
equivalent expression to Eq.~3.20!, valid in the quantum
case.
y

,

.
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